<acronym id="b9rnt"><listing id="b9rnt"><s id="b9rnt"></s></listing></acronym>
<button id="b9rnt"><acronym id="b9rnt"></acronym></button>

      <rp id="b9rnt"><acronym id="b9rnt"><u id="b9rnt"></u></acronym></rp>

      <dd id="b9rnt"></dd>
    1. <li id="b9rnt"><object id="b9rnt"></object></li>

          展開

            Close
            產品分類
            您現在的位置:首頁>> 技術文章>> 簡析頻譜分析儀的原理
            簡析頻譜分析儀的原理
            閱讀:      時間:2018/01/24

            頻譜分析儀架構猶如時域用途的示波器,外觀如圖1.2 示,面板上布建許多功能控制按鍵,作為系統功能之調整與控制,系統主要的功能是在頻域里顯示輸入信號的頻譜特性。頻譜分析儀依信號處理方式的不同,一般 有兩種類型;實時頻譜分析儀(Real-Time Spectrum Analyzer)與掃瞄調諧頻譜分析儀(Sweep-Tuned Spectrum Analyzer)。實時頻率分析儀的功能為在同一瞬間顯示頻域的信號振幅,其工作原理是針對不同的頻率信號而有相對應的濾波器與檢知器 (Detector),再經由同步的多任務掃瞄器將信號傳送到CRT 屏幕上,其優點是能顯示周期性雜散波(PeriodicRandom Waves)的瞬間反應,其缺點是價昂且性能受限于頻寬范圍、濾波器的數目與大的多任務交換時間(Switching Time)。

             

              常用的頻譜分析儀是掃瞄調諧頻譜分析儀,其基本結構類似外差式接收器,工作原理是輸入信號經衰減器直接 外加到混波器,可調變的本地振蕩器經與CRT 同步的掃瞄產生器產生隨時間作線性變化的振蕩頻率,經混波器與輸入信號混波降頻后的中頻信號(IF)再放大、濾波與檢波傳送到CRT 的垂直方向板,因此在CRT 的縱軸顯示信號振幅與頻率的對應關系,信號流程架構如圖1.3 示。
             
              影響信號反應的重要部份為濾波器頻寬,濾波器之特性為高斯濾波器(Gaussian-Shaped Filter),影響的功能就是量測時常見到的解析頻寬(RBW, Resolution Bandwidth)。RBW 代表兩個不同頻率的信號能夠被清楚的分辨出來的低頻寬差異,兩個不同頻率的信號頻寬如低于頻譜分析儀的RBW,此時該兩信號將重迭,難以分辨,較低的 RBW 固然有助于不同頻率信號的分辨與量測,低的RBW 將濾除較高頻率的信號成份,導致信號顯示時產生失真,失真值與設定的RBW 密切相關,較高的RBW 固然有助于寬帶帶信號的偵測,將增加噪聲底層值(Noise Floor),降低量測靈敏度,對于偵測低強度的信號易產生阻礙,因此適當的RBW 寬度是正確使用頻譜分析儀重要的概念。
             
              圖1.2:頻譜分析儀的外觀
             
              另外的視頻頻寬(VBW,Video Bandwidth)代表單一信號顯示在屏幕需的低頻寬。如前說明,量測信號時,視頻頻寬過與不及均非適宜,都將造成量測的困擾,如何調整必須加以 了解。通常RBW 的頻寬大于等于VBW,調整RBW 而信號振幅并無產生明顯的變化,此時之RBW 頻寬即可加以采用。量測RF 視頻載波時,信號經設備內部的混波器降頻后再加以放大、濾波(RBW 決定)及檢波顯示等流程,若掃描太快,RBW 濾波器將無法完全充電到信號的振幅峰值,因此必須維持足夠的掃描時間,而RBW 的寬度與掃描時間呈互動關系,RBW 較大,掃描時間也較快,反之亦然,RBW 適當寬度的選擇因而顯現其重要性。較寬的RBW 較能充分地反應輸入信號的波形與振幅,但較低的RBW 將能區別不同頻率的信號。例如使用于6MHz 頻寬視訊頻道的量測,經驗得知,RBW 為300kHz 與3MHz 時,載波振幅峰值并不產生顯著變化,量測6MHz的視頻信號通常選用300kHz 的RBW 以降低噪聲。天線信號量測時,頻譜分析儀的展頻(Span)使用100MHz,獲得較寬廣的信號頻譜需求,RBW使用3MHz。這些的量測參數并非一成不 變,將會依現場狀況及過去量測的經驗加以調整。
             
              1.分析頻譜分析儀的訊息處理過程
             
              在量測高頻信號時,外差式的頻譜分析儀混波以后的中頻因放大之故,能得到較高的靈敏度,且改變中頻濾波器的 頻帶寬度,能容易地改變頻率的分辨率,但由于外差式的頻譜分析儀是在頻帶內掃瞄之故,因此,除非使掃瞄時間趨近于零,無法得到輸入信號的實時(Real Time)反應,故欲得到與實時分析儀的性能一樣的外差式頻譜分析儀,其掃瞄速度要非常之快,若用比中頻濾波器之時間常數小的掃瞄時間來掃瞄的話,則無 法得到信號正確的振幅,因此欲提高頻譜分析儀之頻率分辨率,且要能得到準確之響應,要有適當的掃瞄速度。由以上之敘述,可以得知外差式頻譜分析儀無法分 析瞬時信號(TransientSignal)或脈沖信號(Impulse Signal)的頻譜,而其主要應用則在測試周期性的信號及其它雜散信號(Random Signal)的頻譜。頻譜分析儀系統內部及面板顯示的特性,詳如附錄一的說明,對該內容的了解將有助于頻譜分析儀的操作使用。一般本地振蕩器輸出信號的 頻率均高于中頻信號的頻率,本地振蕩器輸出信號的頻率可被調整在諧波之頻率,亦即ƒIN=n⋅ƒLO±ƒI F n=1 2 3.......(2)
             
              由式(2)得知,頻譜分析儀的信號量測范圍,無形中己被拓寬,低于或高于本地振蕩器或其它諧波頻率的輸入信 號,均能被混波產生中頻。延伸輸入信號頻率的混波原理如圖1.4 示,其中縱軸代表輸入信號(ƒIN),橫軸代表本地振蕩頻率(ƒLO),圖中的正負整數代表公式(2)中頻放大器對應的正負號。
             
              圖1.3:頻譜分析儀的信號流程
             
              由圖1.4 可體會頻譜分析儀利用本地振蕩的諧波信號延伸輸入信號頻率的工作原理。然而圖1.4 可能對應多個輸入信號頻率,為消除此一現象,在衰減器前面加入頻率預選器(Preselector),用來提升頻譜分析儀的動態范圍,同時使輸出的結果能 去除其它不必要的頻率而真正反應輸入信號的頻率。
             
              圖1.4:利用本地振蕩之諧波信號拓展信號頻率的原理
             
              由以上得知外差或頻譜分析儀無法分析瞬時信號(TransientSignal)或脈沖信號(Impulse Signal)的頻譜,而其主要應用則在測試周期性的信號及其它隨機信號(Random Signal)的頻譜。
             
              2.噪聲特性
             
              由于電阻的熱敏效應,任何設備均具有噪聲,頻譜分析儀亦不例外,頻譜分析儀的噪聲,本質上是熱噪聲,屬于隨 機性(Random),它能被放大與衰減,由于系隨機性信號,兩噪聲的結合只有相加而無法產生相減的效果。在頻帶范圍內也相當平坦,其頻寬遠大于設備內部 電路的頻寬,檢測器檢知的噪聲值與設定的分辨率頻寬(RBW)有關。由于噪聲是隨機性迭加于信號功率上,因此顯示的噪聲準位與分辨率頻寬成對數的關系,改 變分辨率頻寬時噪聲隨之變化,噪聲改變量相關的數學式如下示:
             
              例如:頻寬從100kHz(BW1)調整到10kHz(BW2),則噪聲改變量為:
             
              亦即降低噪聲量10dB (為原來的1/10),相對提高訊號與噪聲比10dB。由此可知,純粹要降低噪聲量,使用窄寬度的頻寬將能達到目的。不論噪聲來之于外部或內部產生,量 測時均將影響信號振幅的準確性,特別在低準位信號時,更是如此,噪聲太大時,甚至掩蓋信號以致無法正確判斷信號的大小,影響量測質量的兩種噪聲可概括為下 列三大項:
             
              (1).產生于交換功能的數字電路、點火系統與DC 馬達脈沖噪聲,這類噪聲常見于EMI(Electromagnetic Interference)的討論領域里。
             
              (2). 隨機性噪聲來之于自然界或電路的電子移動, 又稱之為KTBW (或稱熱敏)噪聲、Johnson 噪聲、寬帶噪聲或白氏(White)噪聲等,本書主要以熱敏噪聲為重點,數學式為:
             
              Pn =kTBW , (5)
             
              其中: Pn =噪聲功率= 3.98*10−21 瓦/Hz 或-174dB/Hz
             
              k=Boltzman 常數,1.38*10−23 joule/oK
             
              T=溫度表示的常溫=290 oK
             
              BW=系統的噪聲功率頻寬(Hz)。
             
              在4MHz、75 Ω 、290 oK 時的噪聲功率為-59.1dBm。由噪聲功率得知,信號頻寬降低,系統噪聲功率隨之降低,信號的質量以信號噪聲比表示
             
              (SNR;Signal-to-Noise Ratio),信號強度(單位為dBm)與系統噪聲功率(單位為dBm)的相減值即為信號噪聲比,數學式為:
             
              3.匹配因素
             
              量測設備的輸入阻抗有時無法匹配待測件連接線特性阻抗,根據電磁理論,阻抗匹配時,輸出功率大且沒有其它不良的副作用,而阻抗不匹配,將造成信號反射,影響系統頻率的穩定與造成信號功率的損失。信號在傳輸在線往返傳送將產生駐波及噪聲,進而影響接收端的信號質量與量測值的準確性。量測設備輸入阻抗與待測件組抗不匹配之缺點可規納為:
             
              A.信號反射,傳輸纜在線產生駐波。
              B.噪聲增大。
              C.降低信號輸出功率。
              D.影響系統頻率的穩定。
              E.影響量測值之準確度。

            產品分類
            公司信息
            深圳市領測儀器儀表有限公司

            聯系人:馬先生

            電話:13923768442

            手機:13923768442

            傳真:0769-23076272

            郵箱:mamin@linece.net

            郵編:518000

            地址:松山湖中小科技企業創業園1棟2樓
            服務與支持
            在線留言
            信譽評價
            您是第 位訪客   

            All rights reserved Copyright ? 2003-2022   粵ICP備10064000號

            欧美性开放bbxxx_天堂www天堂资源网_18岁女rapperdisssubs欢迎您_久久精品国产自在天天线